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245. The Adsorption Isotherm of Langmuir and of Brunauer, 
Emmett, and Teller for Multilayers where n i s  2. 

By D. C. JONES and E. W. BIRKS. 

An analysis of the adsorption isotherm of Langmuir and of Brunauer, 
Emmett, and Teller (B.E.T.) for multilayers where the number of such layers 
is limited to two is made. The realisable isotherms show interesting changes 
of type as ol/02 or c reaches certain critical values, o1 and o2 being the 
relative lives of adsorbed molecules in the first and second layers respectively : 
the B.E.T. assumption, that cr2 = oliquid, need not be made in this case. 
For c = 4 the isotherm is a rectangular hyperbola, passing through the origin 
and therefore, for this case, bilayer adsorption on this model gives an isotherm 
of the same form as that given by the Langmuir monolayer equation. 
Deviations from the hyperbola occur as c >< 4 and the deviations are simply 
related to the value of c. 

ONE of the authors has pointed out (Jones et al., J . ,  1951, 126) the resemblances existing between 
the Brunauer-Emmett-Teller equations for multilayer adsorption and those of Langmuir 
( J .  Amer. Chem. SOC., 1918, 40, 1361) for Cases IV and VI, which are concerned, respectively, 
with adsorption where n molecules can occupy one elementary space and where multilayers, in 
limited numbers up to n, or where n is infinite, can occur. 

Equation 1 is essentially that of Langmuir for Case IV where q is the total quantity of 
adsorbed gas expressed in g.-mols., N is Avogadro's number, No is the number of elementary 
spaces per sq. cm., p is the collision number, and ol, 0 2 .  . . . . .  0, are the relative lives of the 
adsorbed molecules in the elementary spaces containing 1--n molecules. 

If now the Langmuir assumption is made that o1 # c2 but that a2 = o3 = cr4, etc., then 
equation 1 becomes : 

The corresponding equation given by Brunauer (" The Adsorption of Gases and Vapours," 
Oxford Univ. Press, 1945) is 

cx 1 - (n + 1)x" + nx"f1 . . . . . . .  - (3) 

(4) 1 - % ~ ( 1 - ~ ) [ 1 + c % ( 1 + % + % ~ +  . . .  xn- l ) ]  . . . .  

- 
V 
v, 1 - x x '  1 + (c - 1 ) x -  cx"+l - 

. . . . . . .  - CX (1 - x)*(1 + 2% + 3x2 + nxn-1) -- 

. . . . . .  
( 5)  

n x n - 1 )  

l + c x ( l + x + x * +  . . . . . .  xn-1). . . . . . . .  
- cx(1 + 2x + 3x2 + - 

Comparing equations 2 and 5 i t  is seen that they are identical if  o1p = cx, and a2p = x : the 
quantity c = a,/cs,, the ratio of the relative lives of the adsorbate on the first and on the 
subsequent layers (vide Jones, Zoc. c i t . ) .  

Consideration of the case for n = 3 and the general case will be dealt with in further papers. 
In this communication the case for n = 2 is analysed. This has especial interest because (1)  i t  
has been reported to occur experimentally; (2) no assumptions need be made as to the value 
assigned to o2 (in the B.E.T. theory o2 = oL where oL is the relative life of the adsorbed molecule 
on the liquid surface) : so that this objection to the B.E.T. theory is not present in this case; 
(3) the analysis would also apply to the case where a monolayer is not exceeded but where two 
molecules can be present per elementary space. 
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Using the B.E.T. nomenclature but remembering that c is now a,/o, and has not the special 

significance allotted to i t  by these authors, we have, from equation 5 : 
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The conclusions that will be drawn as regards the main features of the isotherm are illustrated 
in Figs. 1 A ,  B, and C ,  these sections of the figure referring to the cases t > 4, c = 4, and 
c < 4 respectively. 

Equation 6 gives V/Vm = 0 if x = 0 ;  V / V ,  = 0 also for x = - 1/2 except where c = 4. 
All the isotherms therefore pass through the origin and through the point (VIVm = 0, x = 
- l / Z )  with this exception. In the case of c = 4 equation 6 becomes V/Vm = 4x/(1 + Z x ) ,  
which is a rectangular hyperbola with asymptotes V/V, = 2 and x = - 1/2 (Fig. 1 B). 

FIG. 1 A .  FIG. 1 C. 
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FIG. 1 B.  

V/V, = QJ if cxa + cx + 1 = 0 : it is readily seen that if c > 4 there are two real negative 
roots to this equation, i.e. , there are two asymptotes for negative values of x ; these asymptotes 
approach each other as c diminishes ; when c = 4 the asymptotes coincide at x = - 1 /2 (two 
equal roots) (Fig. 1 B )  if 0 < c < 4 the roots are imaginary. 

Again, V/Vm approaches 2 as x approaches infinity; indeed, as can be deduced from 
equation 5, in general, V / V ,  approaches n asymptotically as x approaches infinity; this of 
course also applies to the well-known Case 1 of Langmuir where n = 1. 

From equation 7 it can be shown that there are no turning values if x is positive, or, if x is 
negative, when c > 4 (Fig. 1 A )  ; there are two turning points if c < 4, at  negative values of x ,  
the curves having a maximum and a minimum, but only one asymptote, V / V ,  = 2 (Fig. 1 C). 
When c = 4 

c C =-- - co if x = -&. d(V/Vm) -= 
dx 1 + 4x + 4x2 (1 + 24'  

The gradient is thus a, at  x '= - 1/2 and has finite values if x is > or < - 1/2 (Fig. 1 B ) .  
The slope a t  the origin for all isotherms is c. 
The roots of the cubic equation comprising the numerator of equation 8 have been determined 

by the cosine method and confirm that when 4 > c > 2 there are three negative points 
of inflection ; when c = 2 there are two negative points of inflection and one at the origin ; 
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when c < 2 two points of inflection are negative and the third is now positive ; when c has the 
values 1, 0.5, and 0.2, the corresponding positive points of inflection are, approximately, at the 
values of x = 0.22, 0.5, and 1, respectively. The points of inflection on the curves shown are 
marked by crosses in Fig. 1 C. The negative point of inflection marked a in Fig. 1 C near the 
minimum of the curve for c = 3, moves to the origin when c = 2, and then occurs a t  higher 
positive values of x as the value of c diminishes. 

It will be noticed that the numerator of equation 8 contains a term independent of x ,  viz., 
(2  - c ) .  Further analysis has shown that this constant term is present whatever the value of 
n (n > 1) ; it is characteristic of this Langmuir multilayer model. I t  follows that when c = 2 
there is always a point of inflection a t  the origin and this means that a change of adsorption 
type occurs always a t  this value of c in this model, This type change is heralded by 
corresponding changes in the shapes of the isotherms. This can be seen clearly from the realisable 
isotherms shown in Fig. 2, and the corresponding x / ( V / V m )  against x plots given in Fig. 3. 

FIG. 2. FIG. 3. 

For c = 4 the isotherm is a rectangular hyperbola passing through the origin; this equation 
is of the same character as that for Langmuir's Case 1, and, as seen in Fig. 3, a straight line is 
obtained in this case. 

If c > 4 there are deviations from the linear relation, e.g., c = 10 in Fig. 3, and, if c < 4 
much greater deviations, but now in the opposite direction, e.g., c = 1 and 2 in Fig. 3.  The 
corresponding changes in the shapes of the isotherms can be seen in Fig. 2 ; the almost linear 
portion for c = 2 found occurring from the origin to values of x = 0.3 (approx.) and even to 
higher values of x for c = 1, is due to the position of the point of inflection whose locus is 
indicated by a broken line in the diagram. These linear portions give slopes approximately 
equal to the initial slope c. It may be noticed that although for this case of n = 2, only when 
c = 4 would the curve give a true straight line plot as in Fig. 3, yet deviations would not be large 
for neighbouring values of c, and further, even in the range from c = 10 to c = 1, extrapolation 
of the plot a t  low values of x to x = 0 would give fairly accurately the value of l / c  (see Fig. 3). 
Thus from equation 6 
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From equation 9 i t  is seen that the function x / (  VIV,) = l / c  when x = 0. The transformation 
in equation 10 gives the deviation of the function from the case of c = 4 (the hyperbola) ; the 
first term on the right-hand side of equation 10 is the value of the function for c = 4, and the 
second term gives the deviations, which are negative or positive as c > or < 4 : further, when c 
is large the numerator of the second term approaches the value - 1 and the deviations approach 
a constant value for each value of x ;  also the deviation becomes greater for a given value of t 
as x approaches 0. These points have illustrations in Fig. 3 and may be useful in the 
interpretation of experimental results. 

In this case then, the realisable adsorption curves are of type I if c > 2 (interpreting type I 
as the isotherm which is always concave downwards and not necessarily obeying the Langmuir 
Case 1 equation) ; type V if 0.2 (approx.) < c < 2. If 0 < c < 0.2 (approx.), the positive point 
of inflection is a t  values of x > 1 and the adsorption type could perhaps best be called VA, 
although it  resembles type I11 in being convex downwards for the whole of the realisable curve. 
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